jueves, 20 de noviembre de 2008

Ensayo 3

El cielo en la tierra
Lo mejor que tiene escribir estos artículos es que me obliga a ejercitar la mente constantemente. Tengo que estar con los ojos y los oídos siempre abiertos, atento a cualquier cosa que haga saltar la chispa de un tema que me parezca que puede ser de interés para el lector.
Por ejemplo, hoy me ha llegado una carta con una pregunta sobre el sistema duodecimal, en el que se cuenta por docenas en lugar de por decenas, y esto ha provocado una reacción mental en cadena que me ha llevado hasta la astronomía y que además me ha dado una idea que, que yo sepa, no se le había ocurrido a nadie antes que a mi.
Lo primero que se me ocurrió es que, después de todo, el sistema duodecimal se utiliza para algunas cosas. Por ejemplo, decimos que doce objetos constituyen una docena, y que doce docenas son una gruesa. Pero, que yo sepa, doce no se ha utilizado nunca como base para un sistema numérico, excepto en los juegos de los matemáticos.
Por otra parte, hay un número que se ha utilizado como base para una notación formal posicional: el 60. Los antiguos babilonios trabajaban en base 10, igual que nosotros, pero también utilizaban con frecuencia el 60 como base alternativa. En un número en base 60, lo que conocemos por escala de unidades contiene todos los números entre el 1 y el 59, mientras que lo que conocemos por escala de decenas se convierte en escala de «sesentenas», y nuestra escala de centenas (diez por diez) se convierte en la escala de «tres mil seiscientos» (sesenta por sesenta).
Así, al escribir un número, por ejemplo 123, en realidad éste representa (1 x 102) + (2 x 101) + (3 x 100). Y como 102 es igual a 100, 101 es igual a 10 y 100 es igual a 1, el total es 100 +20+3, o, como hemos dicho antes, 123.
Pero si los babilonios querían escribir el equivalente de 123 en base 60, esto seria (1 x 602) + (2 x 601) + (3 x 600). Y como 602 es igual a 3.600, 601 es igual a 60 y 600 es igual a 1, el resultado es 3.600 + 120 + 3, ó 3.723 en nuestra notación decimal. Si utilizamos una notación posicional de base 60, se trata de una «notación sexagesimal».
Como sugiere la palabra «sexagésimo», la notación sexagesimal también puede expresarse con fracciones.
Nuestra notación decimal nos permite utilizar una cifra como 0,156, que en realidad expresa 0 + 1/10 + 5/100 + 6/1.000. Como ven, los denominadores siguen la escala de los múltiplos de 10. En la escala sexagesimal los denominadores siguen la escala de los múltiplos de 60, y 0,156 representaría 0 + 1/60 + 5/3.600 + 6/216.000, ya que 3.600 es igual a 60 x 60, 216.000 es igual a 60 x 60 x 60, y así sucesivamente.
Aquellos de entre ustedes que conozcan bien la notación exponencial, sin duda se sentirán muy satisfechos de saber que 1/10 puede representarse como 10-1, 1/100 puede representarse como 10-2 y así sucesivamente, y que 1/60 puede representarse 60-1, 1/3.600 como 60-2 y así sucesivamente. Por tanto, un número entero en notación sexagesimal seria algo así: (15) (45) (2), (17) (25) (59) ó (15 x 602) + (45 x 601) + (2 x 600), y si quieren pasar el rato calculando cuál es su equivalente en la notación decimal corriente, háganlo. Pero no cuenten conmigo.
Todo esto no tendría más que un interés puramente académico si no fuera por el hecho que seguimos utilizando la notación sexagesimal en al menos dos cuestiones importantes, que datan de la época de los griegos.
Los griegos tenían tendencia a utilizar la notación babilónica en base 60 cuando se enfrentaban a cálculos complicados; como hay tantos números divisibles por 60, las fracciones se evitaban siempre que era posible (¿y quién no intentaría evitar las fracciones siempre que fuera posible?).
Por ejemplo, hay una teoría que afirma que los griegos dividían el radio de un circulo en 60 partes iguales, para que al trabajar con medio radio, o un tercio o un cuarto o un quinto o un sexto o un décimo de radio (y así sucesivamente), siempre les fuera posible expresarlo como un número entero en base sexagesimal. Por tanto, como en la antigüedad el valor de p (pi) a menudo se consideraba aproximadamente igual a 3, lo que facilitaba las cosas, y como la longitud de la circunferencia de un circulo es igual a dos veces p por el radio, la longitud de la circunferencia de un círculo es igual a 6 veces el radio o a 360 sexagésimas partes del radio. De ahí viene quizá la costumbre de dividir un círculo en 360 partes iguales.
Otra posible razón para ello reside en el hecho que el Sol completa su recorrido en un poco más de 365 días, de manera que cada día recorre alrededor de 1/365 de su camino por el firmamento. Ahora bien, los antiguos no iban a hacerse los exigentes por unos cuantos días más o menos, y es mucho más fácil trabajar con 360, así que dividieron el circuito celeste en 360 partes y consideraron que el Sol atraviesa una de estas divisiones (bueno, más o menos) cada día.
La trescientos sesentava parte de un circulo se llama «grado», del latín «peldaño hacia abajo». Si se considera que el Sol se desplaza por una especie de escalera circular, cada día baja un peldaño (bueno, más o menos) de esta escalera.
Siguiendo con el sistema sexagesimal, cada grado puede dividirse en 60 partes más pequeñas, y cada una de éstas en otras 60 más pequeñas aún, y así sucesivamente. La primera división se llamaba en latín pars minuta prima (la primera parte pequeña), y la segunda pars minuta secunda (la segunda parte pequeña), que, en forma abreviada, son los minutos y segundos de nuestro idioma.
El símbolo del grado es un circulito (por supuesto), el del minuto una raya simple y el del segundo una raya doble, de manera que cuando decimos que la latitud de algún lugar determinado de la Tierra es 39° 17'42", lo que estamos diciendo es que está a una distancia del Ecuador de 39 grados más 17/60 de grado más 42/3.600 de grado, y ¿qué es eso sino el sistema sexagesimal?
La segunda cuestión para la que se sigue utilizando el sistema sexagesimal es la medida del tiempo (que en un principio estaba basada en los movimientos de los cuerpos celestes). Así, dividimos la hora en minutos y segundos, y cuando hablamos de un intervalo de tiempo de 1 hora, 44 minutos y 20 segundos, estamos hablando de una duración de 1 hora más 44/60 más 20/3.600 de hora.
Este sistema se puede seguir aplicando más allá del segundo; en la Edad Media los astrónomos árabes lo hacían con frecuencia. Uno de ellos batió una marca al dividir una fracción sexagesimal en otra y calcular un cociente con 10 cifras sexagesimales, que equivalen a 17 cifras decimales.
Bien, olvidémonos por ahora de las fracciones sexagesimales y vamos a concentrarnos en las consecuencias de dividir las circunferencias de los círculos en un determinado número de partes. Y vamos a concentrarnos especialmente en el círculo de la eclíptica a lo largo de la cual el Sol, la Luna y los planetas recorren sus órbitas.
A fin de cuentas, ¿cómo demonios se las puede uno arreglar para medir una distancia en el cielo? No con una cinta métrica, desde luego. En esencia, el sistema consiste en trazar dos líneas imaginarias desde los extremos del intervalo a medir que atraviesen la eclíptica (o cualquier otro arco de círculo) y lleguen al centro del círculo, en el que situamos nuestro punto de vista imaginario, y luego medir el ángulo que forman estas dos líneas.
Es difícil explicar la importancia de este sistema sin un gráfico, pero voy a intentarlo, con mi acostumbrada temeridad (aunque les recomiendo que vayan dibujándolo ustedes mientras leen mi explicación, no vaya a ser que ésta resulte irremediablemente confusa).
Supongamos que tenemos un círculo con un diámetro de 115 metros, otro círculo con el mismo centro y un diámetro de 230 metros y otro más también con el mismo centro y un diámetro de 345 metros. (Se trata de «círculos concéntricos»; su aspecto recuerda el de una diana.)
La circunferencia del círculo más pequeño mediría unos 360 metros, la del intermedio unos 720 metros y la mayor unos 1.080 metros.
A continuación, marcamos 1/360 de la circunferencia del círculo menor, un arco de un metro de largo, y trazamos dos líneas desde los extremos del arco hasta el centro del circulo. Como 1/360 de la circunferencia es un grado, también podemos considerar que el ángulo formado desde el centro es un grado (sobre todo, teniendo en cuenta que 360 arcos iguales a éste ocuparían toda la circunferencia y que por lo tanto 360 ángulos centrales iguales a éste ocuparían todo el espacio alrededor del centro).
Si prolongamos hacia fuera el ángulo de un grado, de manera que sus lados atraviesen los dos círculos mayores, éstos delimitarán un arco de 2 metros en el círculo intermedio y otro de 3 metros en el círculo mayor. Los lados divergen en la misma medida que la circunferencia aumenta de diámetro. Las longitudes de los arcos varían, pero la fracción del círculo en relación con su diámetro sigue siendo la misma. Un ángulo de un grado con vértice en el centro de un circulo delimitará un arco de un grado en la circunferencia de cualquier círculo, sea cual sea su diámetro, ya se trate del circulo que marca los limites de un protón o del Universo (según la geometría euclidiana, me apresuro a añadir). Esto se cumple para todos los ángulos de cualquier medida.
Imaginemos que nuestro ojo está en el centro de un círculo que tiene dos marcas, a una distancia de 1/6 de la circunferencia, es decir, a 360/6 ó 60 grados de arco. Si trazamos una línea imaginaria desde cada marca hasta nuestro ojo, estas dos líneas forman un ángulo de 60 grados. Si miramos primero a una marca y luego a la otra, estamos desplazando la vista en un ángulo de 60 grados.
Y lo de menos es que el círculo esté a una milla o a un trillón de millas de distancia. Si las dos marcas están separadas 1/6 de circunferencia, tienen una separación de 60 grados, sea cual sea la distancia. Es estupendo disponer de esta forma de medir, ya que no tenemos ni la más ligera idea de la distancia a la que se encuentra el círculo.
De manera que, como durante la mayor parte de la historia de la humanidad los astrónomos no conocían las distancias a las que se encontraban los cuerpos celestes, la medición angular era exactamente lo que necesitaban.
Y si no lo creen así, intenten utilizar la medición lineal. Normalmente, si le pedimos a alguien que haga una estimación aproximada del diámetro (aparente) de la Luna, recurrirá casi instintivamente a las medidas lineales.
Lo más probable es que su juiciosa respuesta sea: «Oh, unos treinta centímetros».
Pero al utilizar las medidas lineales está determinando una distancia concreta, lo sepa o no. Para que un objeto de treinta centímetros de diámetro parezca tan grande como la Luna llena, tiene que estar a una distancia de 33 metros. No creo que nadie, aunque piense que la Luna tiene un diámetro de treinta centímetros, considere que se encuentra a una distancia de menos de 33 metros.
Si nos atenemos a las mediciones angulares y afirmamos que el diámetro medio de la Luna llena es 31' (minutos), no estamos haciendo ninguna estimación de la distancia y nos mantenemos en terreno seguro.
Pero si insistimos en utilizar las mediciones angulares, desconocidas para la mayoría de la población, entonces es necesario encontrar la manera que todo el mundo lo entienda. La forma más corriente de hacerlo, y también de representarnos el tamaño de la Luna, por ejemplo, es tomar un circulo que nos sea familiar y calcular la distancia a la que tiene que estar para que parezca del mismo tamaño que la Luna.
Un círculo así es, por ejemplo, el de una moneda de veinticinco centavos. Tiene un diámetro aproximado de 0,96 pulgadas (2,4 cm), y podemos considerar que su diámetro es de 1 pulgada (2,5 cm) sin cometer un error demasiado considerable. Si sostenemos la moneda a 9 pies (unos 3 m) de distancia de nuestros ojos, forma un arco de 31' con centro en éstos, lo que quiere decir que la veremos del mismo tamaño que la Luna llena, y si la mantenemos a esta distancia entre nuestros ojos y la Luna llena, la tapará por completo.
Si nunca se les había ocurrido esta idea, seguramente les parecerá sorprendente que una moneda de un cuarto de dólar a una distancia de 3 metros (que probablemente se imaginen que parecería muy pequeña) cubra por completo la Luna llena (que probablemente consideren que es bastante grande). Lo único que puedo decirles es: ¡hagan el experimento!
Bien, esto puede ser válido para el Sol y la Luna, pero hay que tener en cuenta que son los cuerpos celestes más grandes a simple vista. En realidad, son los únicos (a excepción de algún cometa ocasional) que muestran un disco visible. El resto de los cuerpos celestes se mide en fracciones de minuto, e incluso en fracciones de segundo.
No es difícil continuar con la analogía y decir que un planeta o una estrella determinados tienen un diámetro aparente igual al de una moneda de un cuarto de dólar vista desde una distancia de una o diez o cien millas, y de hecho eso es lo que se suele hacer. ¿Pero qué utilidad puede tener? A esas distancias es imposible ver la moneda o hacerse una idea de su tamaño. Simplemente se ha sustituido una medida no apreciable a simple vista por otra.
Tiene que haber una manera mejor de hacerlo.
Y en este punto de mi razonamiento, tuve esa idea original (espero).
Supongamos que la Tierra tuviera exactamente su tamaño real, pero que fuera una enorme esfera hueca, lisa y transparente. Supongamos que estuviéramos mirando al cielo desde un punto situado exactamente en el centro de la Tierra, y no en su superficie. En ese caso veríamos todos los cuerpos celestes proyectados en la esfera terrestre.
En realidad, es como si el globo terrestre nos sirviera de soporte para dibujar una réplica de la esfera celeste.
La importancia de esto reside en que el globo terrestre es la única esfera sobre la que podemos representar sin dificultad las medidas angulares, ya que todos hemos oído hablar de la latitud y la longitud, que son medidas angulares. Un grado determina una longitud de 69 millas (111 Km.) sobre la superficie de la Tierra (con algunas ligeras variaciones que podemos pasar por alto, debidas al hecho que la Tierra no es una esfera perfecta). Por tanto, 1 minuto, que equivale a 1/60 de grado, es igual a 1,15 millas (1,8 Km.) o a 6.060 pies (1.847 m), y un segundo, que equivale a 1/60 de minuto, es igual a 101 pies (31 m).
Observarán, por tanto, que si conocemos el diámetro angular aparente de un cuerpo celeste, sabemos cuál sería exactamente el diámetro de su representación a escala sobre la superficie de la Tierra.
Por ejemplo, la Luna, con un diámetro angular medio de 31 minutos, tendría un diámetro de 36 millas (58 Km.) en su representación a escala sobre la superficie de la Tierra.
Cubriría limpiamente toda la zona metropolitana de Nueva York, o el espacio que hay entre Boston y Worcester.
Es posible que su primera reacción sea exclamar « ¡COMO!»; pero esta distancia no es tan grande como parece. Recuerden que este modelo a escala es visto desde el centro de la Tierra, a cuatro mil millas (6.436 Km.) de la superficie, y no tienen más que pensar en cuál sería el tamaño aparente del área metropolitana de Nueva York visto desde esa distancia. O, si tienen un globo terráqueo, dibujen un círculo cuyo diámetro se extienda desde Boston a Worcester y se darán cuenta que es verdaderamente muy pequeño en comparación con la superficie total de la Tierra, lo mismo que la Luna es realmente muy pequeña si la comparamos con la superficie total del cielo. (Por cierto, serían necesarios
490.000 cuerpos del tamaño de la Luna para cubrir todo el cielo, y 490.000 cuerpos del tamaño de nuestra representación de la Luna para cubrir toda la superficie terrestre.)
Pero esto al menos nos da una idea del efecto de aumento de mi procedimiento, que resulta especialmente útil cuando trabajamos con cuerpos más pequeños que el Sol o la Luna, en el momento exacto en que la idea de la moneda de cuarto de dólar a una distancia de no sé cuántas millas deja de ser de utilidad.
Por ejemplo, en la Tabla 1 doy los diámetros angulares máximos de diferentes planetas, medidos en el momento en que más se aproximan a la Tierra, y sus diámetros lineales a la escala en que se representarían en la superficie de la Tierra.

TABLA 1. Planetas a escala
Planeta
Mercurio
Venus
Marte
Júpiter
Saturno
Urano
Neptuno
Diámetro angular (seg.)
12,7
64,5
25,1
50,0
20,6
4,2
2,4
Diámetro lineal (pies/metros)
1.280 / 390
6.510 / 1.985
2.540 / 775
5.050 / 1.540
2.080 / 635
425 / 130
240 / 73

No he incluido Plutón, porque no sabemos exactamente cuál es su diámetro angular. Pero si suponemos que su tamaño es aproximadamente el mismo que el de Marte, entonces en el punto más alejado de su órbita seguirá teniendo un diámetro angular de 0,2 segundos, y puede representarse mediante un círculo de 20 pies (6 m).
Podríamos dibujar cada planeta con sus satélites a escala sin mayor problema. Por ejemplo, los cuatro satélites grandes de Júpiter estarían representados por unos círculos de diámetros comprendidos entre 110 y 185 pies (33,5 y 56,4 m), a una distancia de Júpiter que oscilaría entre 3 y 14 millas (5 y 22,5 km.). Todo el sistema joviano, medido hasta la órbita del satélite más alejado (Júpiter IX, un círculo de unos 13 cm de diámetro), cubriría un círculo de unas 350 millas (563 km.) de diámetro.
Pero lo verdaderamente interesante de todo este sistema serían las estrellas. Estas, como los planetas, no presentan un disco visible. Pero, a diferencia de aquellos, ni siquiera presentan un disco visible al observarlos con el telescopio más potente. Los planetas (todos, excepto Plutón) se ven como discos incluso utilizando telescopios de tamaño mediano; no así las estrellas.
Se ha determinado el diámetro angular aparente de algunas estrellas por métodos indirectos. Por ejemplo, la estrella de mayor diámetro angular es probablemente Betelgeuse, con un diámetro de 0,047 segundos. Ni siquiera el enorme telescopio de 200 pulgadas es capaz de ampliar ese diámetro más de mil veces, y a ese aumento la estrella más grande sigue midiendo aparentemente menos de 1 minuto de arco; por tanto, no la vemos como un disco, de igual manera que tampoco vemos así Júpiter al observarlo a simple vista. Y, naturalmente, la mayoría de las estrellas son mucho más pequeñas en apariencia que la enorme Betelgeuse. (Las estrellas que son, en realidad, más grandes que Betelgeuse están tan lejos que parecen más pequeñas.)
Pero en mi escala terrestre, Betelgeuse, con su diámetro aparente de 0,047 segundos de arco, se representaría mediante un círculo de unos 4,7 pies (1,43 m). (Comparen este diámetro con los 20 pies —6 m— de Plutón. que es el planeta más alejado.)
Sin embargo, es inútil tratar de obtener cifras reales a partir de los diámetros angulares, porque sólo se han medido los de unas cuantas estrellas. En lugar de eso, supongamos que todas las estrellas tienen el mismo brillo intrínseco que el Sol. (Lo que, desde luego, no es cierto, pero el Sol es una estrella mediana, y, por tanto, este supuesto no alteraría de manera radical el aspecto del Universo.)
Ahora bien, el brillo aparente del Sol (o de cualquier estrella) se mantiene constante en relación con el área, sea cual sea la distancia. Si el Sol se encontrara al doble de su distancia actual, su brillo aparente seria cuatro veces menor, pero lo mismo ocurriría con su superficie aparente.
El área visible sería tan brillante como de costumbre, sólo que menor.
Lo contrario también es cierto. Mercurio, en el momento en que se encuentra más cerca del Sol, ve una estrella igual de brillante por segundo cuadrado que la que vemos nosotros, pero es también una estrella que ocupa diez veces más segundos cuadrados, y por tanto el Sol de Mercurio es diez veces más brillante que el nuestro.
Bien, si todas las estrellas fueran tan luminosas como el Sol, entonces la superficie aparente sería directamente proporcional a la luminosidad aparente. Conocemos la magnitud del Sol (-26,72), y también las magnitudes de algunas otras estrellas, y esto nos proporciona una escala de luminosidad comparada de la que podemos deducir una escala de superficies comparadas y, por tanto, de diámetros comparados. Lo que es más: como conocemos la medida angular del Sol, podemos servirnos de los diámetros comparados para calcular las medidas angulares comparadas que, naturalmente, podemos pasar a diámetros lineales (a escala) sobre la Tierra.
Pero no se preocupen por los detalles (de todas formas, lo más probable es que se hayan saltado el párrafo anterior); voy a dar los resultados en la Tabla 2.
(El hecho que Betelgeuse tenga un diámetro aparente de 0,047, y, sin embargo, sea menos brillante que Altaír, se debe a que Betelgeuse, una gigante roja, está a una temperatura menor que la del Sol, y por tanto su brillo por unidad de superficie es mucho más débil. Recuerden que la Tabla 2 está basada en el supuesto que todas las estrellas son tan luminosas como el Sol.)
Así que ya ven lo que ocurre en cuanto salimos del sistema solar. La representación a escala de los cuerpos que se encuentran dentro de este sistema se mide en metros y kilómetros. Fuera del sistema solar, nos encontramos con cuerpos que, a escala, no miden más que unos centímetros.
Si se imaginan unas zonas tan pequeñas de la superficie de la Tierra vistas desde su centro, creo que se darán cuenta de lo pequeñas que son en apariencia las estrellas, y de la razón por la que los telescopios no pueden ampliarlas hasta el tamaño de discos visibles.

TABLA 2. Estrellas a escala
Magnitud de la estrella
-1 (Vg. Sirio)
0 (Vg. Rigel)
1 (Vg. Altaír)
2 (Vg. Polaris)
3
4
5
6
Diámetro angular (seg)
0,014
0,0086
0,0055
0,0035
0,0022
0,0014
0,00086
0,00055
Diámetro lineal (pulg/cm)
17.0 / 43,18
10.5 / 26,67
6,7 / 17,02
4.25 / 10,8
2.67 / 6,78
1,70 / 4,32
1,05 / 2,67
0.67 / 1,70

El número total de estrellas visibles sin ayuda del telescopio es de unas 6.000, dos tercios de las cuales son estrellas de poco brillo, de quinta o sexta magnitud. Por tanto, podemos imaginarnos la Tierra cubierta por 6.000 estrellas, la mayoría de las cuales tienen un diámetro de unos dos centímetros y medio. Las estrellas de mayor tamaño son verdaderamente muy escasas, sólo veinte de entre ellas tendrían un diámetro de unos 30 cm.
La distancia media entre dos estrellas representadas sobre la superficie de la Tierra sería de 180 millas (290 kilómetros). En el Estado de Nueva York habría una estrella, o dos como mucho, y en el territorio de los Estados Unidos (Alaska incluida) habría aproximadamente cien estrellas.
Como ven, el cielo está bastante poco habitado, a pesar de las apariencias.
Por supuesto, estamos hablando únicamente de las estrellas visibles. Con un telescopio es posible distinguir miríadas de estrellas cuyo brillo es demasiado débil como para ser perceptible a simple vista, y el telescopio de 200 pulgadas puede fotografiar estrellas de hasta vigésimo segunda magnitud.
Una estrella de magnitud 22 dibujada a escala sobre la Tierra, sólo tendría 0,0004 pulgadas (0,001 cm) de diámetro, más o menos el tamaño de una bacteria. (Distinguir una bacteria brillante sobre la superficie de la Tierra desde la privilegiada atalaya del centro de ésta, a más de 6.000 kilómetros de distancia, resulta una ilustración bastante impresionante del poder de resolución de los telescopios modernos.)
El número de estrellas individuales visibles hasta la magnitud 22 es aproximadamente de dos mil millones. (En nuestra galaxia hay por lo menos cien mil millones de estrellas, pero casi todas se encuentran en el núcleo galáctico, que está completamente oculto a nuestra vista por las nubes de polvo estelar. Los dos mil millones que vemos no son más que unas cuantas que se encuentran cerca de nosotros, en los brazos de la espiral.)
Siguiendo con nuestra escala sobre la Tierra, esto quiere decir que entre los 6.000 círculos que ya hemos dibujado (la mayoría de dos centímetros y medio de diámetro), hemos de espolvorear dos mil millones más de puntitos, de entre los cuales sólo un pequeño porcentaje son bastante grandes como para ser visibles; pero la mayoría tienen un tamaño microscópico.
La distancia media entre las estrellas, incluso después de este numeroso espolvoreo, seguiría siendo, a la escala de la superficie terrestre, de unos 500 metros.
Esto responde a una pregunta que, por lo menos, yo me había hecho en más de una ocasión. Cuando alguien observa una fotografía que muestra las miríadas de estrellas visibles con un telescopio grande, no puede por menos de preguntarse cómo es posible ver más allá de todos esos polvos de talco para observar las galaxias exteriores.
Bueno, lo que ocurre es que, a pesar del inmenso número de estrellas, el espacio libre entre ellas sigue siendo comparativamente enorme. De hecho, se ha calculado que toda la luz estelar que llega hasta nosotros equivale al brillo de 1.100 estrellas de primera magnitud. Esto quiere decir que, si se agruparan todas las estrellas visibles, ocuparían un círculo (en la escala terrestre) de 18,5 pies (5,6 m) de diámetro.
Así que llegamos a la conclusión que todas las estrellas juntas ocupan menos espacio en nuestro cielo que el planeta Plutón. En realidad, sólo la Luna cubre casi 300 veces más porción de firmamento que todos los otros cuerpos celestes nocturnos, más que todos los planetas, satélites, planetoides y estrellas juntos.
Observar el espacio exterior a nuestra galaxia no presentaría ningún problema de no ser por las nubes de polvo, que son el único obstáculo imposible de eliminar aun en el caso que pudiera instalarse un telescopio en el espacio.
Es una pena que el Universo no pueda proyectarse de verdad sobre la superficie de la Tierra por algún tiempo, el bastante para enviar a las siete Pléyades con siete fregonas y órdenes estrictas de quitarle cuidadosamente el polvo al Universo.
¡Qué felices serían entonces los astrónomos!

Nota
Resulta extraña la forma en que la imaginación a veces se queda a mitad de camino. En el artículo precedente se me ocurrió la idea, verdaderamente genial, de proyectar los cielos sobre la esfera terrestre para poder visualizar de una manera nueva y sorprendente los tamaños aparentes de los cuerpos celestes y compararlos entre sí. (Desde luego, nadie ha incluido jamás esta idea en ningún libro de astronomía, que yo sepa: otra muestra más de mi ingenio que no ha llegado al gran público.)
Por otra parte, acabé mi artículo quejándome de las nubes de polvo y diciendo que nos impiden ver lo que hay más allá de ellas, y que eran «imposibles de eliminar aun en el caso que pudiera instalarse un telescopio en el espacio».
Naturalmente, en 1961 ya había radiotelescopios, para los cuales las nubes de polvo no representan ningún problema. Las microondas atraviesan las nubes como si no estuvieran allí. Sin embargo, los radiotelescopios de aquella época detectaban las cosas con mucha menor nitidez que los telescopios ópticos.
Por desgracia, no fui capaz de darme cuenta que un cierto número de radiotelescopios muy separados y que se manejaran al unísono mediante métodos computarizados actuarían básicamente como un solo disco telescópico gigante que sería capaz de ver las cosas con mayor claridad y más detalle que los telescopios ópticos. El resultado es que, por ejemplo, podemos estudiar la actividad de las ondas de radio de nuestro centro galáctico con una enorme precisión, a través de todas las nubes de polvo que se interponen en el camino.

Evita que usuarios sin privilegios copien datos a unidades de almacenamiento externo

Almacenamiento Memorias Flash

Uno de los grandes peligros para muchos usuarios en lo que se refiere a la seguridad de la información viene de la mano de los actuales discos y memorias USB, que se han popularizado hasta el punto de que es extraño el usuario que no tiene una

Analizando el problema y localice una vía bastante simple para evitar que determinados usuarios pudieran sacar datos desde sus ordenadores a través de uno de estos dispositivos.

Para ello, tendremos que acudir al Registro de Windows (Inicio/Ejecutar/regedit) y buscar la clave HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Storage-DevicePolicies. Una vez situados en esta categoría, a la derecha, sólo tendremos que crear una entrada tipo DWORD, a la que llamaremos WriteProtect.

Como valor de esta entrada, introduciremos 1 para bloquear la escritura en discos externos USB (o 0, si más tarde queremos volver a activarla). A partir de este momento, no será necesario ni siquiera reiniciar la máquina. El usuario que intente grabar cualquier fichero o contenido en su dispositivo de almacenamiento USB recibirá un mensaje de error, por lo que le será imposible llevarse información confidencial.

viernes, 7 de noviembre de 2008

Activar la cuenta de administrador en Windows Vista

Los usuarios de Windows Vista sabrán que este viene sin la cuenta de administrador activada, y que esta cuenta esta oculta.

Si eres un usuario novel, mejor omite este truco, ya que podemos "desajustar" algo sino sabemos muy bien lo que estamos haciendo. A los usuarios avanzados les puede venir bien tenerla activa para resolver algún problema a futuro.

Lo primero que vamos a hacer es irnos a Inicio, ahí le damos con el botón derecho a Ejecutar y le damos a Ejecutar como administrador. Entonces se nos abrirá la consola del sistema e introducimos el siguiente comando:

net user administrador /active:yes

Le damos a Enter y teóricamente todo debe haber funcionado. Reiniciaremos el sistema y en la pantalla de inicio nos debe aparecer ya la opción para elegirlo. Ahora lo más importante es darle una contraseña a ese usuario para evitar un uso inapropiado por parte de terceras personas.

Para volver a desactivarla simplemente introducimos el mismo comando pero donde dice /active:yes le decimos /active:no

Activar hasta 4 GB de memoria en Windows Vista 32 bits

Como es sabido, aunque instalemos 4 Gb o más de memoria en Windows Vista ( 32 bits), el sistema sólo reconocerá como máximo 3,5 Gb, no los 4 Gb. Veamos como solucionar este problema:

1.- Teclea cmd en "Buscar" y pulsa despues Ctrl + Shift + Enter (lo que te permite entrar en cmd en modo administrativo)

2) Teclea después: BCDEdit/set PAE forceenable

Listo.

Ensayo 02

Un trozo de pi
En un artículo titulado «Esas ideas disparatadas» (aparecido en la revista Fact and Fancy), dejé caer descuidadamente una nota a pie de página en la que afirmaba que e p i = -1.
Con el resultado que gran parte de los comentarios que recibí después de eso no se ocupaban del contenido del artículo, sino de esa nota. (Un lector, más entristecido que enfadado, demostró esta igualdad, cosa que yo había desdeñado hacer.)
Llegué a la conclusión que algunos lectores sienten interés por estos extraños símbolos. Como yo también lo siento (no obstante no ser matemático, ni ninguna otra cosa), sentí el impulso irresistible de elegir uno de ellos, por ejemplo pi, y escribir sobre él.
En primer lugar, ¿qué es pi? Bueno, se trata de la letra griega pi, y representa la relación entre la longitud del perímetro de un círculo y su diámetro. «Perímetro» viene del griego perimetron , que quiere decir «la medida de alrededor», y «diámetro» viene del griego diametron , que quiere decir «la medida a través». Por alguna oscura razón, mientras la palabra «perímetro» se suele utilizar para los polígonos, cuando se trata de círculos se suele utilizar la expresión latina «circunferencia». Supongo que esto es correcto (no soy un purista), pero tiende a oscurecer la razón de la existencia del símbolo pi.
Alrededor del año 1600, el matemático inglés William Oughtred, refiriéndose a la relación entre el perímetro del círculo y su diámetro, utilizó la letra griega p (pi), para designar el perímetro, y la letra griega d (delta) para designar el diámetro. Se trataba de las primeras letras de perimetron y diametron , respectivamente.
Ahora bien, a menudo los matemáticos tienden a simplificar las cosas. Fijando valores iguales a la unidad siempre que les es posible. Por ejemplo, pueden hablar de un círculo cuyo diámetro es la unidad. En un círculo tal, la longitud del perímetro tiene el mismo valor numérico que la relación del perímetro con el diámetro. (Supongo que para algunos de ustedes esto resulta obvio, y el resto puede fiarse de mi palabra.) Como en un círculo cuyo diámetro sea la unidad el perímetro es igual a esta relación, ésta puede representarse como pi, el símbolo del perímetro. Y como los círculos cuyo diámetro es la unidad se utilizan con mucha frecuencia, esta costumbre arraigó rápidamente.
El primer hombre notable que utilizó pi como símbolo de la relación entre la longitud del perímetro de un círculo y la longitud de su diámetro fue el matemático suizo Leonhard Euler, en 1737, y lo que era bastante bueno para Euler lo era también para todos los demás.
Ahora puedo volver a designar la distancia que rodea a un círculo con la palabra circunferencia.
Pero ¿cuál es la relación entre la circunferencia de un círculo y su diámetro en números reales?
Parece ser que esta cuestión siempre preocupó a los antiguos, mucho antes incluso de la invención de las matemáticas puras. Cualquier tipo de construcción más elaborada que un gallinero requiere calcular por adelantado todo tipo de medidas, a menos que se quiera estar perpetuamente gritando a algún subordinado: « ¡Imbécil, todas estas vigas son quince centímetros demasiado cortas!» Para realizar estas mediciones, dada la naturaleza del universo, siempre resulta necesario utilizar el valor de pi en las multiplicaciones. Incluso cuando no se está trabajando con círculos, sino sólo con ángulos (y los ángulos resultan inevitables) es inevitable tropezarse con el número pi.
Probablemente las primeras personas que se dieron cuenta de la importancia de esta relación al realizar estos cálculos empíricos determinaron la misma dibujando un círculo y midiendo físicamente la longitud del diámetro y de la circunferencia. Desde luego, la medición de la longitud de la circunferencia es un problema difícil que no puede ser resuelto con la típica regla de madera, demasiado rígida para este propósito.
Lo que probablemente hicieran los constructores de pirámides y sus predecesores sería colocar un cordel de lino, siguiendo cuidadosamente la línea de la circunferencia, hacer una pequeña marca en el punto en el que se completaba la medida, y luego enderezar la cuerda y medirla con el equivalente a una regla de madera. (Los matemáticos teóricos modernos desaprueban este método y hacen comentarios altivos del tipo de «pero entonces se está haciendo la arriesgada suposición que la línea tiene la misma longitud cuando es recta que cuando está curvada». Supongo que el honrado trabajador que estuviera organizando la construcción del templo local y tuviera que enfrentarse a una objeción de este tipo habría resuelto el asunto tirando al Nilo a quien la hubiera formulado.)
En cualquier caso, a base de dibujar círculos de diferentes tamaños y de realizar las medidas correspondientes, sin duda los arquitectos y artesanos cayeron muy pronto en la cuenta que la relación era siempre la misma para todos los círculos. En otras palabras, si un círculo tenía un diámetro el doble de largo o 15/8 más largo que el diámetro de un segundo círculo, su circunferencia también era el doble de larga o 15/8 más larga. Por tanto, el problema se reducía no a hallar la relación del círculo que se fuera a utilizar en cada caso, sino a hallar una relación universal válida para todos los círculos y de una vez por todas.
Cuando se tiene en mente el valor de pi, no es necesario volver a determinar esta relación para ningún círculo.
En cuanto al valor real de la relación determinada mediante mediciones, ésta dependía, en los tiempos antiguos, del cuidado que hubiera puesto la persona que realizara las mediciones y de la importancia que tuviera para ella la exactitud como valor abstracto. Los antiguos hebreos, por ejemplo, no eran grandes ingenieros de la construcción, y cuando les llegó el momento de construir su edificio más importante (el templo de Salomón), tuvieron que recurrir a un arquitecto fenicio.
Por tanto, es previsible que los hebreos se valieran sólo de números redondos para su descripción del templo, sin que les parecieran necesarias las estúpidas y fastidiosas fracciones, negándose a tener en cuenta cuestiones tan nimias e insignificantes en lo referente a la Casa de Dios.
Así, en el ensayo 4 de Crónicas 2, describen un «mar de metal fundido» que formaba parte del templo y que probablemente fuera alguna clase de recipiente de forma circular. La descripción comienza en el segundo versículo de este ensayo, y dice así: «E hizo también el mar de metal fundido de diez codos de un borde al otro; redondo enteramente y de cinco codos de altura, y ceñíalo alrededor un cordón de treinta codos.»
Como ven, los hebreos no se daban cuenta que al dar el diámetro de un círculo (diez codos o cualquier otra cosa) automáticamente estaban dando también la medida de su circunferencia. Les parecía necesario especificar que la circunferencia medía treinta codos, y al hacerlo nos revelan que consideraban que pi era exactamente igual a 3.
Existe siempre el peligro que algunos individuos, demasiado aferrados a las palabras literales de la Biblia, puedan considerar que, por consiguiente, 3 es el valor establecido por la divinidad para pi. Me pregunto si no habrán sido éstos los motivos del alma sencilla que, en la asamblea legislativa de cierto Estado, presentó hace algunos años un proyecto de ley para que pi fuera legalmente igual a 3 dentro de las fronteras de ese Estado. Afortunadamente, el proyecto de ley no fue aprobado; de lo contrario todas las ruedas de ese Estado (que, sin ninguna duda, habrían respetado las leyes de sus augustos legisladores) se habrían vuelto hexagonales.
En cualquier caso, aquellos pueblos de la antigüedad que conocían los refinamientos de la arquitectura sabían muy bien, gracias a sus mediciones, que el valor de pi era claramente mayor que 3. El valor más exacto que manejaban era 22/7 (o 31/7, si quieren), que no está nada mal y que se sigue utilizando en la actualidad cuando se quieren obtener con rapidez valores aproximados.
Si sacamos decimales; 22/7 es aproximadamente igual a 3,142857..., mientras que pi es aproximadamente igual a 3,141592... Así, 22/7 sobrepasa este valor en sólo el 0,04 por 100, o una parte cada 2.500, y es lo bastante bueno para la mayor parte de las aplicaciones prácticas.
Luego vinieron los griegos y desarrollaron un sistema geométrico en el que no había lugar para ese lamentable tejemaneje de coloca-un-cordel-y-mídelo-con-una-regla. Es obvio que con este método se obtenían valores que no podían ser mejores que la regla y el cordel y el ojo humano, todos ellos terriblemente imperfectos. En lugar de eso, los griegos se dedicaron a deducir cuál sería el valor de pi una vez que las líneas y las curvas perfectas de la geometría plana ideal que habían inventado eran debidamente tenidas en cuenta.
Arquímedes de Siracusa, por ejemplo, utilizaba el «método exhaustivo» (un precursor del cálculo integral, que Arquímedes podría haber inventado perfectamente dos mil años antes que Newton sólo con tal que algún amable benefactor de los siglos futuros le hubiera enviado los números árabes por medio de una máquina del tiempo) para calcular el valor de pi.
Para comprender en qué consistía este método, imaginemos un triángulo equilátero con sus vértices en la circunferencia de un círculo de diámetro uno. La geometría ordinaria nos basta para calcular el perímetro exacto de dicho triángulo, que es, por si les interesa, 3/2 Ö 3, ó 2,598076... Este perímetro tiene que ser menor que el del circulo (es decir, que el valor de pi), una vez más por razones geométricas elementales.
A continuación, imaginemos que dividimos en dos los arcos comprendidos entre los vértices del triángulo, inscribiendo así un hexágono regular (una figura de seis lados) en el círculo. Podemos determinar también su perímetro (que es exactamente 3); este perímetro es mayor que el del triángulo, pero sigue siendo menor que el del circulo. Si continuamos haciendo lo mismo una y otra vez, podemos ir inscribiendo polígonos regulares de 12, 24, 48... lados.
El espacio entre el polígono y los límites del círculo va disminuyendo o «agotándose» de manera constante, y el polígono se va acercando al círculo todo lo que se quiera, aunque nunca llega a alcanzarlo. Lo mismo puede hacerse con una serie de polígonos equiláteros circunscritos al círculo (que están por fuera de éste, es decir, con sus lados tangentes al círculo), obteniendo una serie de valores decrecientes que se aproximan a la circunferencia del círculo.
Lo que hizo Arquímedes fue básicamente atrapar la circunferencia entre una serie de números que se aproximan a pi desde abajo y otra que se aproxima desde arriba.
De esta manera era posible determinar el valor de pi con cualquier grado de exactitud, siempre que se tuviera la suficiente paciencia como para soportar el aburrimiento de trabajar con polígonos de un gran número de lados.
Arquímedes tuvo el tiempo y la paciencia de trabajar con polígonos de noventa y seis lados, y de esta forma pudo demostrar que el valor de pi era ligeramente menor que 22/7 y ligeramente mayor que la fracción 223/71, algo más pequeña.
Ahora bien, la media de estas dos fracciones es 3.123/994, y el equivalente decimal de esta fracción es 3,141851... Este valor sólo sobrepasa el verdadero valor de pi en un 0,0082 por 100, o una parte cada 12.500.
Hasta el siglo XVI no se obtuvo un valor más aproximado, al menos en Europa. Fue entonces cuando se utilizó por primera vez la fracción 355/113 como valor aproximado de pi. Se trata de la mejor aproximación de pi que puede expresarse en forma de una fracción razonablemente sencilla. El valor decimal de 355/113 es 3,14159292..., mientras que el verdadero valor de pi es 3,14159265... Como ven, 355/113 sobrepasa el verdadero valor de pi en sólo un 0,000008 por 100, o una parte cada 12.500.000.
Para darles alguna idea de lo buena que es la aproximación 355/113, supongamos que la Tierra es una esfera perfecta con un diámetro de 8.000 millas (13.000 kilómetros) exactamente. Podríamos entonces calcular la longitud del Ecuador multiplicando 8.000 por pi. Si damos a pi el valor aproximado de 355/113, el resultado seria 25.132,7433... millas. Con el verdadero valor de pi el resultado seria 25.132,7412... millas. La diferencia sería de unos tres metros. Y una diferencia de tres metros al calcular la circunferencia de la Tierra bien puede considerarse despreciable. Hasta los satélites artificiales que han contribuido a que nuestra geografía alcance mayores cotas de precisión, no nos han proporcionado mediciones con ese grado de exactitud.
La consecuencia es que, para cualquiera que no sea matemático, 355/113 se aproxima a pi lo bastante como para adecuarse a cualquier circunstancia que no sea verdaderamente excepcional. Y, sin embargo, los matemáticos tienen su propio punto de vista. No pueden sentirse felices si no encuentran el valor verdadero. En lo que a ellos respecta, un error, por pequeño que sea, es tan grande como un mega pársec.
Francois Vieta, un matemático francés del siglo XVI, dio el paso decisivo para encontrar el verdadero valor de pi.
Se le considera el padre del álgebra, porque, entre otras cosas, fue el primero en utilizar letras para simbolizar los valores desconocidos: las famosas x e y , a las que la mayoría de nosotros nos hemos tenido que enfrentar, turbados e indecisos, en algún momento de nuestras vidas.
Vieta confeccionó el equivalente algebraico del método geométrico exhaustivo de Arquímedes. Es decir, en lugar de trazar una serie infinita de polígonos cada vez más próximos a un círculo, dedujo una serie infinita de fracciones que podían ser calculadas para dar un valor de pi.
Cuantos más términos de la serie intervinieran en el cálculo, más cerca se estaría del verdadero valor de pi.
No voy a darles la serie de Vieta, porque está llena de raíces cuadradas y raíces cuadradas de raíces cuadradas y raíces cuadradas de raíces cuadradas de raíces cuadradas.
No hay por qué complicarse la vida con eso cuando otros matemáticos dedujeron otras series de términos (se trata siempre de series infinitas) para el cálculo de pi que resultan mucho más fáciles de expresar.
Por ejemplo, en 1673 el matemático alemán Gottfried Wilheim von Leibniz dedujo una serie que puede expresarse de la manera siguiente:

p = 4/1 - 4/3 -+- 4/5-4/7 + 4/9- 4/11 + 4/13- 4/15...

Como yo no soy más que un ingenuo lego en cuestiones matemáticas, sin prácticamente ninguna intuición matemática, cuando tuve la idea de escribir este artículo pensé en utilizar la serie de Leibniz para llegar rápidamente, mediante un sencillo cálculo, a demostrarles cómo se obtenía fácilmente el valor de pi con aproximadamente una docena de decimales. Sin embargo, nada más empezar abandoné el intento.
Puede que me reprochen mi falta de perseverancia, pero invito a cualquiera de ustedes a calcular el valor de la serie de Leibniz hasta el punto en que la he seguido más arriba, es decir, hasta 4/15. Incluso pueden enviarme una postal para comunicarme el resultado. Si cuando terminen se sienten desilusionados al comprobar que su respuesta no se aproxima al valor de pi tanto como la fracción 355/113, no se den por vencidos. Sigan añadiendo términos. Sumen 4/17 a su respuesta, luego resten 4/19, luego sumen 4/21 y resten 4/23, y así sucesivamente. Pueden seguir así todo el tiempo que quieran, y si alguno de ustedes descubre cuántos términos son necesarios para obtener un resultado mejor que 355/113, escríbame también para decírmelo.
Es muy posible que todo esto les parezca decepcionante. Efectivamente, la serie infinita es una representación matemática del valor exacto y verdadero de pi. Para un matemático, es una forma tan válida como cualquier otra de expresar ese valor. Pero si lo que se quiere es tener ese valor en forma de número real, ¿de qué puede servir? Ni siquiera resulta práctico calcular un par de docenas de términos para cualquiera que quiera vivir de una manera normal; ¿cómo entonces es posible calcular un número infinito de términos?
Ah, pero es que los matemáticos no renuncian a sumar los términos de una serie sólo porque el número de términos sea infinito. Por ejemplo, la serie:

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64…

puede ser sumada añadiendo un término a otro sucesivamente. Si lo hacen, descubrirán que cuantos más términos utilicen, más se acercan a la unidad, y esto puede expresarse de manera abreviada diciendo que la suma de ese número infinito de términos no es más que 1, después de todo.
En realidad, existe una fórmula que puede utilizarse para determinar la suma de los términos de cualquier progresión geométrica decreciente, como la del ejemplo que acabamos de ver.
De esta forma, la serie:

3/10 + 3/100 + 3/1.000 + 3/10.000 + 3/100.000...

no suma, a pesar de toda su espléndida infinitud, más que 1/3, y la serie:

1/2 + 1/20 + 1/200 + 1/2.000 + 1/20.000...

tiene un valor de 5/9.
Desde luego, las series desarrolladas para el cálculo de pi no son nunca progresiones geométricas decrecientes, y por tanto no es posible utilizar la fórmula para calcular su suma. En realidad, nunca se ha encontrado una fórmula para calcular la suma de los términos de la serie de Leibniz o de cualquiera de las otras. No obstante, al principio no parecía haber ninguna razón para suponer que no pudiera haber alguna manera de encontrar una progresión geométrica decreciente, cuya suma fuera pi. De ser así, entonces pi podría ser expresado en forma de fracción. Una fracción es, en realidad, la relación entre dos números, y cualquier cosa que pueda expresarse mediante una fracción, o relación, es un «número racional». La esperanza, por tanto, es que pi resultara ser un número racional.
Una de las maneras de probar que una cantidad es un número racional es calcular su valor decimal todo lo que se pueda (añadiendo cada vez más términos de una serie infinita, por ejemplo), para demostrar luego que se trata de un «decimal periódico», es decir, un decimal en el que los dígitos o algunos grupos de dígitos se repiten hasta el infinito.
Por ejemplo, el valor decimal de 1/3 es 0,33333333333..., y el de 1/7 es 0,142857 142857 142857..., y así hasta el infinito. Hasta una fracción como 1/8, que parece «caber justa», es, en realidad, un decimal periódico si se cuentan los ceros, ya que su equivalente decimal es 0,125000000000... Es posible probar matemáticamente que cualquier fracción, por complicada que sea, puede expresarse como un valor decimal que tarde o temprano se hace periódico. Inversamente, cualquier decimal que acabe haciéndose periódico, por muy complicado que sea el ciclo de repetición, puede expresarse como una fracción exacta.
Si tomamos un decimal periódico cualquiera, por ejemplo 0,37373737373737..., es posible obtener a partir de él, en primer lugar, una progresión geométrica decreciente, expresándolo de la siguiente forma:

37/100 + 37/10.000 + 37/1.000,000 + 37/100.000.000...

y luego se puede utilizar la fórmula para conocer el valor de la suma de sus términos, que es 37/99. (Calculen el equivalente decimal de esta fracción, y ya verán lo que obtienen.)
O si tenemos un número decimal que empieza siendo no periódico y luego se hace periódico, como 15,21655555555555..., podemos expresarlo así:

15 + 216/1,000 + 5/10.000 + 5/100.000 + 5/1.000.000...

A partir de 5/10.000 tenemos una progresión geométrica decreciente, y la suma de sus términos resulta ser 5/90.000. Por tanto, se trata de una serie finita compuesta únicamente de tres términos, que pueden sumarse sin problemas:

15 + 216/1.000 + 5/90.000 = 136.949/9.000

Si quieren, pueden calcular el valor decimal 136.949/9.000 para comprobar el resultado.
Pues bien, si se hallara el equivalente decimal de pi con un cierto número de cifras decimales y se detectara alguna repetición, por muy ligera o complicada que fuera, siempre que pudiera demostrarse que se repite continuamente se podría expresar su valor exacto mediante una serie nueva.
Esta serie nueva acabaría con una progresión geométrica decreciente, cuyos términos podrían sumarse. Se obtendría, por tanto, una serie finita y se podría expresar el valor exacto de pi no como una serie, sino como un número real.
Los matemáticos se lanzaron en su busca. En 1593 el mismo Vieta utilizó su propia serie para calcular el valor de pi con diecisiete decimales. Aquí lo tienen, por si quieren echarle un vistazo: 3,14159265358979323. Como ven, no parece haber ningún tipo de periodo.
Más tarde, en 1615 el matemático alemán Ludolf von Ceulen utilizó una serie infinita para calcular pi con treinta y cinco decimales. Tampoco él encontró ninguna repetición. De todas formas, ésta era una hazaña tan impresionante para la época que adquirió una cierta fama, a consecuencia de la cual el número pi es llamado a veces «el número de Ludolf», por lo menos en los libros de texto alemanes.
Después, en 1717, el matemático inglés Abraham Sharp aventajó en varios puestos a Ludolf al calcular el valor de pi con setenta y dos cifras decimales. Y seguía sin haber rastros de repeticiones.
Pero poco tiempo después se estropeó el juego, Para demostrar que una cantidad es racional hay que dar con su fracción equivalente y desarrollarla. Pero para probar que es irracional, no es imprescindible calcular ni un solo decimal. Lo que hay que hacer es suponer que la cantidad puede expresarse con una fracción, p/q, para luego demostrar que esto supone una contradicción, como, por ejemplo, que pi tendría que ser a la vez par e impar.
Esto demostraría que ninguna fracción puede expresar esa cantidad, que, por tanto, será irracional.
Esta prueba es exactamente la que desarrollaron los antiguos griegos para demostrar que la raíz cuadrada de 2 era un número irracional (el primero que se descubrió).
Este descubrimiento es atribuido a los pitagóricos, y se dice que se sintieron tan horrorizados al descubrir que era posible que existieran cantidades que no pudieran ponerse en forma de fracción, ni aun de la más complicada, que juraron guardar el secreto y acordaron castigar con la pena de muerte al que lo revelara. Pero al igual que todos los secretos científicos, ya se trate de números irracionales o de bombas atómicas, la información acabó por filtrarse.
Bien; en 1761 un físico y matemático alemán, Johann Heinrich Lambert, demostró por fin que pi es irracional.
Por tanto, no había que esperar encontrar alguna pauta, ni siquiera la más insignificante, por muchos decimales que se calcularan. El verdadero valor solo puede expresarse en forma de serie infinita.
¡Ay!
Pero no derramen sus lágrimas. Una vez demostrado que pi es un número irracional, los matemáticos se dieron por satisfechos. El problema estaba resuelto. Y en cuanto a la aplicación de pi a los fenómenos físicos, ese problema también estaba resuelto de una vez por todas. Puede que piensen que a veces podría ser necesario, en cálculos muy delicados, conocer el valor de pi con unas docenas e incluso con unos cientos de cifras decimales. ¡Pues no es así! Las mediciones que realizan los científicos en la actualidad son maravillosamente precisas, pero aun así muy pocas llegan más allá de, digamos, una milmillonésima parte, y para un cálculo de esta precisión en el que se utilice el valor de pi bastaría con nueve o diez cifras decimales.
Por ejemplo, supongamos que trazamos un círculo de diez mil millones de millas (dieciséis mil millones de kilómetros) de diámetro, con el Sol en el centro, que encierre en su interior todo el sistema solar, y supongamos que queremos calcular la longitud de la circunferencia de este círculo (que mediría más de treinta y un mil millones de millas, o sesenta mil millones de kilómetros), tomando 355/113 como valor aproximado de pi. El error sería de menos de tres mil millas (cinco mil kilómetros).
Pero supongamos ahora que fueran ustedes tan precisos y maniáticos que un error de cinco mil kilómetros en sesenta mil millones les resultara insoportable. Pueden entonces utilizar el valor de pi dado por Ludolf, con treinta y cinco cifras decimales. En ese caso el error seria de una longitud equivalente a la millonésima parte del diámetro de un protón.
O, si no, tomemos un circulo grande, como, por ejemplo, la circunferencia del universo conocido. Se espera que los grandes radiotelescopios que están siendo construidos reciban señales desde distancias tan enormes como 40.000.000.000 de años-luz. Un círculo alrededor de un universo de ese radio tendría una longitud aproximada de 150.000.000.000.000.000.000.000 (ciento cincuenta mil trillones) de millas (240 mil trillones de kilómetros). Si se calculara la longitud de esta circunferencia con el valor de pi de Ludolf, de treinta y cinco cifras decimales, el error no llegaría a la millonésima parte de una pulgada (2,5 cm).
¿Qué decir entonces del valor de pi calculado por Sharpe, con setenta y dos cifras decimales?
Es evidente que el valor de pi que se conocía en la época en que se demostró que era irracional ya era mucho más preciso de lo que la ciencia podría jamás desear, en la actualidad o en el futuro.
Y, sin embargo, aunque los científicos ya no tenían necesidad de conocer el valor de pi más allá de lo calculado hasta entonces, los cálculos prosiguieron durante la primera mitad del siglo XIX.
Un tal George Vega calculó 140 valores decimales de pi; otro llamado Zacarías Dase llegó hasta 200, y un tal Recher hasta los 500.
Por último, en 1873, William Shanks calculó el valor de pi con 707 cifras decimales, lo que estableció una marca hasta 1949, y no es extraño: Shanks tardó quince años en hacer este cálculo, y, por si les interesa, no encontró ninguna clase de repetición.
Cabe preguntarse qué motivo puede tener un hombre para pasarse quince años dedicado a una tarea que no va a tener ninguna utilidad. Quizá se trate de la misma actitud mental que empuja a alguien a sentarse sobre el asta de una bandera o a tragarse peces de colores para «batir el record». O quizá Shanks quería hacerse famoso.
Si es así, lo consiguió. La historia de las matemáticas, llena de referencias a los trabajos de hombres como Arquímedes, Fermat, Newton, Euler y Gauss, también incluye una línea en la que da cuenta que William Shanks se pasó los años anteriores a 1873 calculando el valor de pi con 707 cifras decimales, así que al menos puede que no hubiera vivido en vano.
Pero, ¡ay de la vanidad humana! En 1949 los ordenadores gigantes estaban empezando a ganar terreno, y de vez en cuando los muchachos que los manejaban, llenos de vida, de ganas de divertirse y de cerveza, tenían tiempo para jugar con ellos, así que en una ocasión metieron una de estas series interminables en un ordenador llamado ENIAC, y lo pusieron a calcular el valor de pi. Lo tuvieron trabajando setenta horas, al término de las cuales había calculado el valor de pi (¡el fantasma de Shanks!) con 2.035 valores decimales (*). Y para rematar al pobre Shanks y sus quince años desperdiciados, se descubrió un error en el dígito quinientos y tantos del valor calculado por él, de manera que todos los dígitos siguientes, bastante más de cien, ¡estaban mal! Y, por supuesto, por si se les ha ocurrido preguntárselo, lo que no deberían hacer, les diré que los valores calculados por los ordenadores no presentan tampoco rastro alguno de repeticiones.

jueves, 6 de noviembre de 2008

Ensayo 01

La fracción más pequeña del segundo
De vez en cuando alguna novedad científica me da una idea; no tiene por qué tratarse necesariamente de algo importante, por supuesto, pero sí de algo que represente una novedad. Este capítulo está dedicado a una de estas ideas.
Esta idea se me ocurrió hace algún tiempo, cuando se anunció que una partícula subatómica llamada «xi-cero» había sido detectada por primera vez. Como otras partículas de naturaleza parecida, es extrañamente estable, y tiene una vida media de aproximadamente una diezmilmillonésima (10 -10 ) de segundo.
Puede que parezca que en la frase anterior hay una errata: pueden pensar que lo que quería decir era «inestable». ¡Pues no! Una diezmilmillonésima de segundo puede ser mucho tiempo; todo depende de la escala de referencia.
Comparado con una cienmiltrillonésima (10 -23 ) de segundo, una diezmilmillonésima de segundo es un eón. La diferencia entre estos dos intervalos de tiempo es la misma que existe entre un día y treinta mil millones de años.
Es posible que, aun admitiendo esto, se sientan ustedes mareados. El mundo de las fracciones de segundo y de las fracciones de fracciones de fracciones de segundo resulta muy difícil de visualizar. Es fácil decir «una sextillonésima de segundo»; tan fácil como decir «una diezbillonésima de segundo»; pero, por muy fácilmente que juguemos con los símbolos que representan estos intervalos de tiempo, es imposible (o parece imposible) visualizar cualquiera de ellos.
Con mi idea pretendo facilitar la visualización de las fracciones de segundo; se me ocurrió gracias al dispositivo utilizado para realizar mediciones en un campo que también resulta grotesco y fuera del ámbito de la experiencia común: el de las distancias astronómicas.
No hay nada de extraño en la afirmación: «Vega es una estrella muy cercana. No está a mucho más de doscientos cuarenta billones (2,4 x 10 14 ) de kilómetros de distancia.»
La mayoría de los lectores de ciencia-ficción estamos acostumbrados a la idea que doscientos cuarenta billones de kilómetros es una distancia muy pequeña a escala cósmica. La mayor parte de las estrellas de nuestra galaxia está a unos trescientos veinte mil billones (3,2 x 10 17 ) de kilómetros de distancia, y la galaxia más cercana está a más de dieciséis trillones (1,6 x 10 19 ) de kilómetros de distancia.
Millón, billón y trillón son palabras perfectamente admisibles que representan números, y es fácil distinguir cuál es la mayor y en qué medida es mayor que las otras, si lo único que se pretende es manipular los símbolos. Pero otra cosa es visualizar su significado.
El truco está en utilizar la velocidad de la luz y reducir los números a un tamaño de bolsillo. Esto no cambia en absoluto las distancias reales, pero resulta más fácil hacerse un cuadro mental del asunto cuando no nos abruman todos esos ceros de los «-illones».
La velocidad de la luz en el vacío es de 186.274 millas por segundo o, en el sistema métrico decimal, de 299.779 kilómetros por segundo.
Un «segundo-luz», por tanto, puede definirse como la distancia recorrida por la luz (en el vacío) en un segundo, que es igual a 186.274 millas o 299.779 kilómetros.
No es difícil confeccionar unidades mayores en este sistema. Un «minuto-luz» es igual a 60 segundos-luz; una «hora-luz» es igual a 60 minutos-luz, y así sucesivamente, hasta llegar al conocidísimo «año-luz», que es la distancia recorrida por la luz (en él vacío) en un año. Esta distancia es igual a 5.890.000.000.000 millas, o a 9.460.000.000.000 kilómetros. Si les bastan los números redondos, pueden considerar que un año-luz es igual a seis billones (6 x 10 12 ) de millas, y a nueve billones y medio (9,5 x 10 12 ) de kilómetros.
Si quieren, pueden continuar con los «siglos-luz» y los «milenios-luz», pero casi nadie lo hace. El año-luz es la unidad preferida para las distancias astronómicas. (También está el «pársec», que es igual a 3,26 años-luz, o aproximadamente veinte billones de millas —32 billones de kilómetros—, pero se trata de una unidad basada en un principio distinto, y no es necesario que nos ocupemos de ella aquí.)
Utilizando el año-luz como unidad, podemos decir que Vega está a 27 años-luz de distancia, y se trata de una distancia pequeña teniendo en cuenta que la mayoría de las estrellas de nuestra galaxia están a 35.000 años-luz de distancia, y que la galaxia más cercana está a una distancia de 2.100.000 años-luz. La diferencia entre 27, 35.000 y 2.100.000, dado el alcance de nuestra experiencia, es más fácil de visualizar que la existente entre ciento cincuenta billones, doscientos mil billones y diez trillones, aunque en ambos casos la relación sea la misma.
Además, utilizar la velocidad de la luz para definir unidades de distancia tiene la ventaja de simplificar algunas de las relaciones entre el tiempo y la distancia.
Por ejemplo, supongamos que una expedición a Ganímedes está en un determinado momento a 500.000.000 millas (804.500.000 kilómetros) de la Tierra. (La distancia, naturalmente, varía con el tiempo, ya que ambos planetas van describiendo su órbita.) Esta distancia también puede expresarse como 44,8 minutos-luz.
¿Qué ventajas tiene esta última expresión? En primer lugar, 44,8 es un número más fácil de decir y manejar que 500.000.000. En segundo lugar, supongamos que nuestra expedición se comunica por radio con la Tierra. Un mensaje enviado desde Ganímedes a la Tierra (o viceversa) tardaría en llegar 44,8 minutos. El uso de las unidades de luz expresa la distancia y la velocidad de comunicación al mismo tiempo.
(En realidad, en un mundo en el que los viajes interplanetarios fueran un hecho corriente, me pregunto si los astronautas no se pondrían a medir la distancia en « minutos­radio » en lugar de en minutos-luz. Es lo mismo, desde luego, pero más adecuado.)
Por tanto, cuando los viajes interestelares sean una realidad, si lo son alguna vez, haciendo necesario el uso de velocidades próximas a la de la luz, también se descubriría otra ventaja. Si la dilatación del tiempo es un hecho, y la experiencia del mismo se hace más lenta a grandes velocidades, un viaje a Vega puede dar la impresión de durar sólo un mes o una semana. Sin embargo, para los que se hayan quedado en la Tierra, que experimentan el «tiempo objetivo» (la clase de tiempo que se experimenta a bajas velocidades: en sentido estricto, a la velocidad cero), el viaje a Vega, que está a una distancia de 27 años-luz, no puede durar menos de 27 años. Uno de estos viajeros, por muy corta que le haya parecido la duración del viaje, encontraría a su vuelta a sus amigos de la Tierra 54 años más viejos como mínimo. Del mismo modo, un viaje a la galaxia de Andrómeda no puede durar menos de 2.100.000 años de tiempo objetivo, porque Andrómeda está a 2.100.000 años-luz de distancia. Una vez más, el tiempo y la distancia se expresan simultáneamente.
Por consiguiente, mi idea es aplicar el mismo principio al campo de los periodos de tiempo ultracortos.
En lugar de concentrarse en las distancias enormemente grandes que la luz puede recorrer en las unidades de tiempo ordinarias, ¿por qué no concentrarse en los intervalos de tiempo enormemente pequeños que tarda la luz en recorrer las unidades de distancia ordinarias?
Si consideramos que un segundo-luz equivale a la distancia recorrida por la luz (en el vacío) en un segundo, y fijamos su valor en 186.273 millas, ¿por qué no hablar de una «milla-luz» como el equivalente al tiempo necesario para que la luz (en el vacío) recorra una distancia de una milla, y fijar su valor en 1/186.273 segundos?
¿Por qué no? El único inconveniente es que 186.273 es un número muy irregular. Pero, por una curiosa coincidencia que los inventores del sistema métrico jamás habrían podido imaginar, la velocidad de la luz es de casi 300.000 kilómetros por segundo, de manera que un «kilómetro-luz» es igual a 1/300.000 segundos. Los números todavía son más redondos si observamos que 3 1/3 kilómetros-luz equivalen casi a 0,00001 ó 10 -5 segundos.
Además, para llegar a unidades de tiempo aún más pequeñas, basta considerar que la luz recorre distancias cada vez más pequeñas.
Así, un kilómetro (10 5 centímetros) es igual a un millón de milímetros, y un milímetro (10 -1 centímetros) es igual a un millón de milimicras. Si descendemos un paso más, podemos decir que una milimicra (10 -7 centímetros) es igual a un millón de fermis. (El nombre «fermi» ha sido propuesto, pero, que yo sepa, todavía no se ha adoptado oficialmente como unidad de longitud equivalente a la millonésima parte de una milimicra, o a 10 -13 centímetros. Está tomado, por supuesto, del fallecido Enrico Fermi, y yo he adoptado esta denominación para las explicaciones en este capítulo.)
Por tanto, podemos confeccionar una pequeña tabla de unidades-luz para intervalos de tiempo ultracortos, empezando con un kilómetro-luz, que equivale a sólo 1/300.000 segundos.
1 kilómetro-luz =1.000.000 milímetros-luz
1 milímetro-luz =1.000.000 milimicras-luz
1 milimicra-luz =1.000.000 fermis-luz
Para relacionar estas unidades con las unidades convencionales de tiempo, sólo es necesario confeccionar otra pequeña tabla:
3 1/3 kilómetros-luz = 10 -5 segundos (esto es, una cienmilésima de segundo)
3 1/3 milímetros-luz = 10 -11 segundos (esto es, una cienmilmillonésima de segundo)
3 1/3 milimicras-luz = 10 -17 segundos (esto es, una cienmilbillonésima de segundo)
3 1/3 fermis-luz = 10 -23 segundos (esto es, una cienmiltrillonésima de segundo)
Pero ¿por qué hemos de detenernos en el fermi-luz?
Podemos seguir descendiendo, dividiendo indefinidamente por un millón.
Volvamos a considerar qué es un fermi. Equivale a 10 -13 centímetros, la diezbillonésima parte de un centímetro. Lo más interesante de esta cifra en particular, que es la razón que se haya propuesto el nombre de un físico atómico para designarla, es que 10 -13 centímetros es también el diámetro aproximado de diversas partículas subatómicas.
Un fermi-luz, por tanto, es el tiempo necesario para que un rayo de luz vaya de un extremo a otro de un protón. El fermi-luz es el tiempo necesario para que el movimiento más rápido que conocemos recorra la distancia tangible más pequeña que existe. Hasta que llegue el día en que se descubra algo que se mueva a mayor velocidad que la luz o algo más pequeño que las partículas subatómicas, no hay muchas probabilidades que tengamos que ocuparnos de un intervalo de tiempo menor que el fermi-luz. Por el momento, el fermi­luz es la fracción más pequeña del segundo.
Naturalmente, se preguntarán qué es lo que puede ocurrir en el espacio de un fermi­luz. Y si verdaderamente ocurriera algo en ese intervalo increíblemente pequeño, ¿cómo podríamos saber que, en realidad, no ha tenido lugar en un tiempo de una milimicra-luz, que también es un intervalo increíblemente pequeño por mucho que equivalga a un millón de fermis-luz?
Pues bien, pensemos en las partículas híperenergéticas. Estas partículas (si la energía es lo suficientemente grande) viajan casi a la velocidad de la luz. Y cuando una de estas partículas se acerca a otra a esa velocidad, a menudo se desencadena una reacción entre ellas, como resultado de las «fuerzas nucleares» mutuas que intervienen.
Pero las fuerzas nucleares tienen muy poco alcance. Su intensidad disminuye con la distancia con tanta rapidez que estas fuerzas sólo son apreciables a una distancia de uno o dos fermis de cualquier partícula.
Este es el caso, por tanto, de dos partículas que se desplacen a la velocidad de la luz y que sólo puedan interactuar mientras se encuentren a una distancia de un par de fermis. Sólo son necesarios un par de fermis-luz para que entren y abandonen esa pequeña zona de interacción a la tremenda velocidad a la que se mueven. ¡Y, sin embargo, sí que se producen reacciones!
Las reacciones nucleares que tienen lugar en intervalos de tiempo de fermis-luz se consideran «interacciones fuertes». Son el resultado de las fuerzas que pueden hacer sentir su influencia en el intervalo más efímero que cabe imaginar, y éstas son las fuerzas más potentes que conocemos. Las fuerzas nucleares de este tipo son, de hecho, 135 veces más potentes que las fuerzas electromagnéticas a las que estamos acostumbrados.
Los científicos se adaptaron a este hecho, y estaban preparados para constatar que cualquier reacción nuclear en la que participen partículas subatómicas tiene una duración de sólo unos cuantos fermis-luz de tiempo.
Pero entonces surgieron las complicaciones. Cuando se hizo chocar las partículas entre sí con la suficiente energía como para que se produjeran interacciones fuertes, se detectó la presencia de nuevas partículas nunca observadas hasta entonces y que se creaban durante este proceso.
Algunas de estas nuevas partículas (observadas por primera vez en 1950) asombraron a los científicos al comprobar que tenían una gran masa. De hecho, su masa era claramente mayor que la de los neutrones o los protones, que hasta entonces eran las partículas con mayor masa que se conocían.
Estas partículas supermasivas se llaman «hiperones».
Hay tres tipos de hiperones, que se designan con los nombres de tres letras griegas. Están las partículas lambda, que son alrededor de un 12 por 100 más pesadas que el protón; las partículas sigma, alrededor de un 13 por 100 más pesadas, y las partículas xi, alrededor de un 14 por 100 más pesadas.
Existían razones teóricas para sospechar que hay un par de partículas lambda, tres pares de partículas sigma y dos pares de partículas xi. Se diferencian unas de otras en la naturaleza de su carga eléctrica y en el hecho que una partícula de cada par es una «antipartícula». Uno tras otro, cada uno de estos hiperones fue detectado en experimentos realizados en cámaras de burbujas; la última fue la partícula xi-cero, detectada a principios de 1959. La lista de hiperones estaba completa.
Sin embargo, los hiperones en conjunto resultaron ser unas pequeñas criaturas muy extrañas. No duraban mucho tiempo, sólo fracciones de segundo increíblemente pequeñas. Pero los científicos consideraban esta duración extremadamente larga, ya que en su descomposición intervenían fuerzas nucleares y, por tanto, ésta tendría que producirse en un intervalo de tiempo de algunos fermis-luz.
Pero no era así. Hasta el más inestable de los hiperones, la partícula sigma-cero, dura al menos una trillonésima de segundo. Dicho así, parece un periodo de tiempo bastante corto, o al menos, no lo bastante largo como para que dé tiempo para aburrirse. Pero cuando expresamos este intervalo de tiempo en unidades-luz en lugar de las unidades convencionales, descubrimos que una trillonésima de segundo equivale a 30.000 fermis­luz.
¡Demasiado tiempo!
Y aun así, 30.000 fermis-luz es un tiempo de vida extraordinariamente corto para un hiperón. El resto, incluyendo la partícula xi-cero descubierta hace poco, tienen una vida media de alrededor de 30.000.000.000.000 fermis-luz, o 30 milímetros-luz.
Dado que las fuerzas nucleares que provocan la descomposición de los hiperones tienen una duración al menos diez mil billones de veces mayor que el intervalo de tiempo necesario para su formación, esas fuerzas tienen que ser más débiles en esa misma medida que las que intervienen en las interacciones fuertes. Naturalmente, se dice que estas nuevas fuerzas intervienen en las interacciones débiles, y son verdaderamente débiles, hasta casi un billón de veces más débiles que las fuerzas electromagnéticas.
En realidad, las nuevas partículas que tomaban parte en las interacciones débiles fueron llamadas «partículas extrañas», en parte por esta razón, y con ese nombre se han quedado. Ahora se atribuye a cada partícula un «número de rareza», que puede ser + 1, 0, ­1 ó -2.
A las partículas ordinarias, como el protón y el neutrón, les corresponde el número 0; a las partículas lambda y sigma el número -1, a las partículas xi el - 2, y así sucesivamente. Todavía no está claro del todo cuál es el significado exacto del número de rareza; pero es posible utilizarlo ahora e intentar descubrirlo más adelante.
Las trayectorias y actividades de los distintos hiperones (y también del resto de las partículas subatómicas) producen determinados efectos en las moléculas con las que entran en colisión. Por lo general, una colisión de este tipo provoca el desprendimiento de uno o dos electrones de las moléculas de aire. Lo que queda de la molécula después de la colisión es un ión con carga eléctrica.
Un ión resulta un centro mucho más eficaz, alrededor del cual se puede formar una gotita de agua, que la molécula original sin carga eléctrica. Si una partícula en movimiento colisiona con las moléculas de una muestra de aire saturada de vapor de agua (como ocurre en la cámara de ionización de Wilson), cada ión producido se convierte inmediatamente en el centro de una gotita de agua o de gas, respectivamente. La partícula en movimiento, por tanto, va marcando su trayectoria con una delicada línea de gotas de agua. Cuando la partícula se descompone en otras dos, que se alejan siguiendo dos direcciones diferentes, la línea de agua lo revela al dividirse, dibujando una Y.
Todo esto ocurre de manera instantánea desde el punto de vista de la percepción humana. Pero una serie de fotografías de los recorridos resultantes permitirá a los físicos nucleares deducir cuál es la cadena de acontecimientos que produjeron los diferentes modelos de trayectorias.
Únicamente las partículas subatómicas con carga eléctrica pueden golpear eficazmente un electrón y llevarlo fuera de los límites de la molécula a la que pertenecía. Por esta razón sólo es posible seguir las trayectorias de gotitas de agua de las partículas con carga eléctrica. Y también por esta razón, en cualquier tipo de partículas, las variedades sin carga eléctrica o neutras son siempre las últimas en ser detectadas.
Por ejemplo, el neutrón, que no tiene carga eléctrica, fue descubierto dieciocho años después del descubrimiento del protón, una partícula parecida, pero cargada eléctricamente. Y en el caso de los hiperones, el último en ser descubierto fue el xi-cero, una de las variedades neutras. (El cero significa «carga cero».)
Pero las partículas neutras pueden ser detectadas gracias a la ausencia de rastros. Por ejemplo, la partícula xi-cero se formó a partir de una partícula con carga eléctrica, y finalmente se descompone formando otro tipo de partícula con carga eléctrica. En la fotografía que, por fin, dio en el blanco (se examinaron unas setenta mil fotografías), había líneas de gotitas separadas por una significativa brecha. Esa brecha no podía estar ocupada por ninguna de las partículas sin carga eléctrica conocidas, porque todas ellas habrían producido una brecha de un tipo diferente o una secuencia de acontecimientos distinta al final de cada brecha. La única partícula que encajaba era la xi-cero, y de esta manera tan negativa fue descubierta la última partícula.
¿Y dónde encajan en todo esto las unidades-luz que he propuesto? Pues bien, tengamos en cuenta que una partícula que se desplace a casi la velocidad de la luz es capaz de recorrer, si su vida media es de unos 30 milímetros-luz, 30 milímetros antes de descomponerse.
Una cosa implica la otra. Utilizando las unidades convencionales, se puede decir que una línea de gotitas de agua de una longitud aproximada de 30 milímetros supone una vida media de aproximadamente una billonésima de segundo (o viceversa), pero no existe una relación evidente entre los dos valores numéricos. Decir que una trayectoria de 30 milímetros implica una vida media de 30 milímetros-luz es igualmente cierto, y establece una relación mucho más estrecha. Una vez más, igual que ocurre con las distancias astronómicas, la utilización de la velocidad de la luz hace posible que un número exprese al mismo tiempo la distancia y el tiempo.
Un grupo de partículas que hizo su aparición antes que los hiperones es el de los «mesones». Se trata de partículas de peso medio, más ligeras que los protones y neutrones, pero más pesadas que los electrones. (Y de ahí su nombre, tomado de una palabra griega que significa «medio».)
También de estas partículas se conocen tres variedades.
Las dos variedades más ligeras también se distinguen con diferentes letras griegas. Son los mesones mu, descubiertos en 1935, de masa equivalente a unas 0,11 veces la del protón, y los mesones pi, descubiertos en 1947, de masa equivalente a unas 0,15 veces la del protón. Por último, a principios de 1949 se descubrieron diversos tipos de mesones anormalmente pesados, los mesones K, cuya masa equivale a unas 0,53 veces la del protón.
En conjunto, los mesones son menos inestables que los hiperones. Sus vidas medias son más largas. Mientras que el más estable de los hiperones tiene una vida media de sólo 30 milímetros-luz, las vidas medias de los mesones oscilan normalmente entre ese valor y
8.000 milímetros-luz para los mesones pi que tienen carga eléctrica, hasta 800.000 milímetros-luz para los mesones mu.
A estas alturas la cifra de 800.000 milímetros-luz ya debe de darles la impresión de constituir una vida media verdaderamente muy larga, así que me limitaré a recordarles que, en unidades convencionales, equivale a 1/400.000 de segundo.
Un intervalo de tiempo muy breve para nosotros, pero largísimo a escala nuclear. Sólo el mesón K está clasificado como partícula extraña. A los mesones K-plus y K-cero les corresponde el número de rareza + 1, y al mesón K-menos el — 1. Entre paréntesis, las interacciones débiles abrieron no hace mucho la puerta a una nueva revolución en la física. Aproximadamente durante los primeros ocho años después de su descubrimiento, las interacciones débiles no parecían ser otra cosa que unos desconcertantes estorbos. Pero en 1957, después de ciertas investigaciones relacionadas con estas reacciones, se demostró que la «ley de conservación de la paridad» es aplicable a todos los procesos que tienen lugar en la naturaleza. No voy a entrar en detalles; basta quizá con decir que esta demostración dejó anonadados a los físicos; que los dos jóvenes estudiantes chinos que dieron con ella (el mayor tenía treinta y tantos años) fueron rápidamente galardonados con el premio Nóbel, y que, aparentemente, se están abriendo perspectivas totalmente nuevas en la teoría nuclear a consecuencia de su descubrimiento. Aparte de los mesones y los hiperones, sólo se conoce otra partícula inestable: el neutrón. El neutrón es estable en el interior del núcleo atómico; pero cuando se encuentra aislado, se descompone para formar un protón, un electrón y un neutrino. (Por supuesto, las antipartículas como los positrones y los antiprotones son inestables en el sentido que reaccionan con los electrones y los protones respectivamente. En circunstancias ordinarias, esto ocurre en una millonésima de segundo aproximadamente. Sin embargo, si estas antipartículas se encontraran aisladas, se mantendrían en su estado actual eternamente, y eso es lo que significa estabilidad en este contexto.) La duración media de la descomposición del neutrón es de 1.010 segundos (aproximadamente 17 minutos), y este tiempo es aproximadamente mil millones de veces más largo que el de la duración media de descomposición de cualquier otra partícula. En unidades-luz, la vida media de un neutrón sería de 350.000.000 kilómetros-luz. Es decir, si cierto número de neutrones se movieran a la velocidad de la luz, recorrerían 350.000.000 kilómetros (la órbita de la Tierra de un extremo al otro y un poquito más) antes que la mitad de ellos se hubiera descompuesto.
Naturalmente los neutrones, tal como los utilizan los científicos, no se desplazan ni mucho menos a la velocidad de la luz. De hecho, los neutrones que resultan de especial utilidad para desencadenar la fisión del uranio se mueven muy despacio; su velocidad de desplazamiento no es mayor que la de las moléculas de aire. Su velocidad aproximada es de una milla por segundo.
Incluso a una velocidad tan lenta, una corriente de neutrones recorrerá mil millas
(1.609 kilómetros) antes que la mitad de ellos se haya descompuesto. Y en esas mil millas pueden ocurrirles muchas otras cosas. Por ejemplo, si se están desplazando a través de uranio o plutonio, es posible que sean absorbidos por sus núcleos y que desencadenen la fisión. Y que contribuyan a la creación del mundo en que vivimos hoy en día, desconcertante y peligroso, pero también apasionante.